SUREFLOW ADDITIVE 3350 Mirotone Chemwatch: **5073-31** Version No: **7.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: 29/06/2015 Print Date: 29/06/2015 Initial Date: Not Available S.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | SUREFLOW ADDITIVE 3350 | |-------------------------------|--| | Synonyms | Product Code: 5980 | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Use according to manufacturer's directions. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Flow additive solution. # Details of the manufacturer/importer | Registered company name | Mirotone | |-------------------------|---| | Address | 21 Marigold Street Revesby 2212 NSW Australia | | Telephone | +61 2 9795 3700 | | Fax | +61 2 9771 3601 | | Website | www.mirotone.com, www.polycure.com.au | | Email | Not Available | # Emergency telephone number | Association / Organisation | Not Available | | |-----------------------------------|---------------------------------|--| | Emergency telephone numbers | 1800 039 008 (Aust) | | | Other emergency telephone numbers | +61 3 9573 3112 (International) | | # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code. ## CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 2 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 1 | | 1 = Low
2 = Moderate | | Reactivity | 1 | | 3 = High | | Chronic | 3 | | 4 = Extreme | | Poisons Schedule | S5 | |------------------------|---| | GHS Classification [1] | Flammable Liquid Category 3, Reproductive Toxicity Category 1B, STOT - SE (Narcosis) Category 3, Aspiration Hazard Category 1, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | # Label elements GHS label elements SIGNAL WORD DANGER Chemwatch: 5073-31 Page 2 of 12 Issue Date: 29/06/2015 Version No: **7.1.1.1** Print Date: 29/06/2015 # **SUREFLOW ADDITIVE 3350** | H226 | Flammable liquid and vapour | |--------|---| | H360 | May damage fertility or the unborn child | | H336 | May cause drowsiness or dizziness | | H304 | May be fatal if swallowed and enters airways | | H401 | Toxic to aquatic life | | H411 | Toxic to aquatic life with long lasting effects | | AUH066 | Repeated exposure may cause skin dryness and cracking | # Supplementary statement(s) Not Applicable # CLP classification (additional) Not Applicable # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | P271 | Use only outdoors or in a well-ventilated area. | | P281 | Use personal protective equipment as required. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. | | P273 | Avoid release to the environment. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | # Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider | |----------------|---| | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | P331 | Do NOT induce vomiting. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | P391 | Collect spillage. | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | # Precautionary statement(s) Disposal Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS # Substances See section below for composition of Mixtures ## **Mixtures** | CAS No | %[weight] | Name | |---------------------------------|-----------|---| | 64742-95-6. | 30-60 | naphtha petroleum, light aromatic solvent | | 108-65-6 | 30-60 | propylene glycol monomethyl ether acetate, alpha-isomer | | | balance | Ingredients determined not to be hazardous | | contains less than 0.1% benzene | | | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures Eye Contact If this product comes in contact with the eyes: ► Wash out immediately with fresh running water. Chemwatch: 5073-31 Page 3 of 12 Issue Date: 29/06/2015 Version No: 7.1.1.1 Print Date: 29/06/2015 ### **SUREFLOW ADDITIVE 3350** | | Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. | ### Indication of any immediate medical attention and special treatment needed Treat symptomatically Any material aspirated during yomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For acute or short term repeated exposures to petroleum distillates or related hydrocarbons: - ▶ Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg)
should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Figure Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] # **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** Water spray or fog. Alcohol stable foam. Dry chemical powder. Carbon dioxide Do not use a water jet to fight fire. # Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | | |-------------------------|--|--|--| | Advice for firefighters | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. | | | - ▶ If safe to do so, remove containers from path of fire. - ▶ Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. # Fire/Explosion Hazard - Moderate explosion hazard when exposed to heat or flame. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include; carbon dioxide (CO2) other pyrolysis products typical of burning organic material # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures # Minor Spills - ► Remove all ignition sources. - Clean up all spills immediately - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. ▶ Contain and absorb small quantities with vermiculite or other absorbent material Chemwatch: **5073-31** Page **4** of **12** Issue Date: **29/06/2015**Version No: **7.1.1.1** Print Date: **29/06/2015** ### **SUREFLOW ADDITIVE 3350** Wipe up. Collect residues in a flammable waste container Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. ▶ No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Major Spills Water spray or fog may be used to disperse / absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment Collect recoverable product into labelled containers for recycling Absorb remaining product with sand, earth or vermiculite Collect solid residues and seal in labelled drums for disposal Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services Personal Protective Equipment advice is contained in Section 8 of the MSDS. ### **SECTION 7 HANDLING AND STORAGE** ### Precautions for safe handling - · Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - ► Use in a well-ventilated area - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ▶ Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets.Earth all lines and equipment. - Safe handling Other information - ▶ Use spark-free tools when handling - Ose spark-free tools when handling. - ► Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - ▶ Keep containers securely sealed when not in use - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ► Work clothes should be laundered separately - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this MSDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Store in original containers in approved flammable liquid storage area. Store away from incompatible materials in a cool, dry, well-ventilated area. - ► DO NOT store in pits, depressions, basements or areas where vapours may be trapped - No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - $\blacksquare \ \ \, \text{Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.}$ - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - ▶ Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents ## Conditions for safe storage, including any incompatibilities - ► Packing as supplied by manufacturer. - ▶ Plastic containers may only be used if approved for flammable liquid. - ► Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - ▶ Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. ## Storage incompatibility Suitable container ► Avoid reaction with oxidising agents ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** Chemwatch: 5073-31 Page 5 of 12 Issue Date: 29/06/2015 Version No: 7.1.1.1 Print Date: 29/06/2015 # **SUREFLOW ADDITIVE 3350** **Control parameters** ## OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---|------------------------------|-----------------------|------------------------|------------------|-------| | Australia Exposure Standards | propylene glycol monomethyl ether acetate, alpha-
isomer | 1-Methoxy-2-propanol acetate | 274 mg/m3 / 50
ppm | 548 mg/m3 / 100
ppm | Not
Available | Sk | ### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 |
---|--|------------------|------------------|------------------| | naphtha petroleum, light aromatic solvent | Aromatic hydrocarbon solvents; (High flash naphtha distillates; Solvent naphtha (petroleum), light aromatic) | 3.1 ppm | 34 ppm | 410 ppm | | propylene glycol monomethyl ether acetate, alpha-isomer | Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate) | Not
Available | Not
Available | Not
Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | naphtha petroleum, light aromatic solvent | Not Available | Not Available | | propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | Not Available | ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contamination | 7 til Opoodi | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Type of Contaminant | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Personal protection Appropriate engineering controls Within each range the appropriate value depends on: - Safety glasses with side shields - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below Air Speed Chemwatch: 5073-31 Page 6 of 12 Issue Date: 29/06/2015 Version No: 7.1.1.1 Print Date: 29/06/2015 ### **SUREFLOW ADDITIVE 3350** | Hands/feet protection | ▶ Wear chemical protective gloves, e.g. PVC. ▶ Wear safety footwear or safety gumboots, e.g. Rubber | |-----------------------|---| | Body protection | See Other protection below | | Other protection | Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. | | Thermal hazards | Not Available | ### Recommended material(s) ## GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the $\ computer$ generated selection: SUREFLOW ADDITIVE 3350 Not Available | Material CPI | | |--------------|--| |--------------|--| - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 10 x ES | A-AUS / Class 1
P3 | - | A-PAPR-AUS /
Class 1 P3 | | up to 50 x ES | Air-line* | - | - | | up to 100 x ES | - | A-3 P3 | - | | 100+ x ES | - | Air-line** | - | * - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** | nformation on basic physical and chemical properties | | | | |--|---|--|----------------| | Appearance | Clear yellowish flammable liquid with a solvent odour; not miscible with water. | | | | | | | | | Physical state | Liquid | Relative density (Water = 1) | 0.88 | | Odour | Not Available | Partition coefficient
n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 127 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | >23 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | >1 |
VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | Chemwatch: 5073-31 Page 7 of 12 Version No: 7.1.1.1 **SUREFLOW ADDITIVE 3350** Issue Date: 29/06/2015 Print Date: 29/06/2015 Hazardous decomposition products See section 5 ### SECTION 11 TOXICOLOGICAL INFORMATION ## Information on toxicological effects Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage If exposure to highly concentrated solvent atmosphere is prolonged this may lead to narcosis, unconsciousness, even coma and possible death. Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor. Ingestion Inhaled Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Skin Contact Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to. This material can cause eye irritation and damage in some persons. Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation Chronic Eye Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. | SUREFLOW ADDITIVE 3350 | TOXICITY | RRITATION | |---|--|---------------| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | naphtha petroleum, light | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Nil reported | | aromatic solvent | Inhalation (rat) LC50: >3670 ppm/8 h *[2] | | | | Oral (rat) LD50: >4500 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | propylene glycol
monomethyl ether acetate,
alpha-isomer | Dermal (rabbit) LD50: >5000 mg/kg*] ^[2] | * [CCINFO] | | | Inhalation (rat) LC50: 4345 ppm/6h ^[2] | Nil reported | | | Oral (rat) LD50: >8532 mg/kgd ^[2] | | Leaend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's msds. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances ## For trimethylbenzenes: Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethylbenzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates. ### NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing Chemwatch: 5073-31 Page 8 of 12 Issue Date: 29/06/2015 Version No: 7.1.1.1 ## **SUREFLOW ADDITIVE 3350** Print Date: 29/06/2015 80% 1.2.4- and 1.3.5-trimethylbenzenes Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested. Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia. Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation. Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9
fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation For C9 aromatics (typically trimethylbenzenes - TMBs) Acute Toxicity Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines. Irritation and Sensitization Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified. Repeated Dose Toxicity Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs. The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects. Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutagenicity In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2.310, or 7.560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays. genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category Reproductive and Developmental Toxicity Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21. Systemic Effects on Parental Generations: The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3). Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated Chemwatch: 5073-31 Page 9 of 12 Issue Date: 29/06/2015 Version No: 7.1.1.1 Print Date: 29/06/2015 ## **SUREFLOW ADDITIVE 3350** females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to
1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation., a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe] for propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects). This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product. Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body. As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faces As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to expose the remaining category members are slightly to non-irritating None are skin sensitisers. In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (lighest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity. The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPnB, and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice. A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS ## PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER | Acute Toxicity | 0 | Carcinogenicity | 0 | |---------------------------|---|-----------------|---| | Skin Irritation/Corrosion | 0 | Reproductivity | ✓ | Chemwatch: 5073-31 Page 10 of 12 Issue Date: 29/06/2015 Version No: 7.1.1.1 Print Date: 29/06/2015 # **SUREFLOW ADDITIVE 3350** | Serious Eye
Damage/Irritation | 0 | STOT - Single Exposure | ✓ | |-----------------------------------|---|--------------------------|----------| | Respiratory or Skin sensitisation | 0 | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | ~ | Legend: ✓ – Data required to make classification available 🗶 – Data
available but does not fill the criteria for classification ○ – Data Not Available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** ## Toxicity Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.). DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-------------------------|------------------| | propylene glycol monomethyl ether acetate, alpha-isomer | LOW | LOW | # Bioaccumulative potential | Ingredient | Bioaccumulation | |---|---------------------| | propylene glycol monomethyl ether acetate, alpha-isomer | LOW (LogKOW = 0.56) | # Mobility in soil | Ingredient | Mobility | |---|--------------------| | propylene glycol monomethyl ether acetate, alpha-isomer | HIGH (KOC = 1.838) | # **SECTION 13 DISPOSAL CONSIDERATIONS** ## Waste treatment methods Product / Packaging disposal - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 TRANSPORT INFORMATION** # **Labels Required** **Marine Pollutant** •3Y HAZCHEM # Land transport (ADG) | UN number | 1263 | | |------------------------------|--|--| | Packing group | III | | | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Environmental hazard | No relevant data | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | Special precautions for user | Special provisions 163 223 * Limited quantity 5 L | | Chemwatch: 5073-31 Page **11** of **12** Version No: 7.1.1.1 # **SUREFLOW ADDITIVE 3350** | UN number | 1263 | | |------------------------------|---|-------------| | Packing group | III | | | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | Environmental hazard | No relevant data | | | Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L | | | | Special provisions | A3 A72 A192 | | | Cargo Only Packing Instructions | 366 | | | Cargo Only Maximum Qty / Pack | 220 L | | Special precautions for user | Passenger and Cargo Packing Instructions | 355 | | | Passenger and Cargo Maximum Qty / Pack | 60 L | | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | | Passenger and Cargo Limited Maximum Qty / Pack | 10L | # Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | |------------------------------|--| | Packing group | | | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Environmental hazard | Not Applicable | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | Special precautions for user | EMS Number F-E , S-E Special provisions 163 223 955 Limited Quantities 5 L | # Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code | Source | Ingredient | Pollution Category | |---|---|--------------------| | IMO MARPOL 73/78 (Annex
II) - List of Noxious Liquid
Substances Carried in Bulk | naphtha petroleum, light aromatic solvent | Υ | | IMO MARPOL 73/78 (Annex
II) - List of Noxious Liquid
Substances Carried in Bulk | propylene glycol monomethyl ether acetate, alpha-isomer | z | # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT(64742-95-6.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Substances Information System - Consolidated Lists # PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER(108-65-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Substances Information System - Consolidated Lists | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (propylene glycol monomethyl ether acetate, alpha-isomer; naphtha petroleum, light aromatic solvent) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Y | | Japan - ENCS | Υ | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | Issue Date: 29/06/2015 Print Date: 29/06/2015 Chemwatch: 5073-31 Page 12 of 12 Issue Date: 29/06/2015 # **SUREFLOW ADDITIVE 3350** Version No: 7.1.1.1 Print Date: 29/06/2015 ## **SECTION 16 OTHER INFORMATION** ### Other information ## Ingredients with multiple cas numbers | • | | |---|-----------------------------------| | Name | CAS No | | naphtha petroleum, light aromatic solvent | 25550-14-5., 64742-95-6. | | propylene glycol monomethyl ether acetate, alpha-isomer | 108-65-6, 142300-82-1, 84540-57-8 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.